

Week 8

Statistical analyses in R

Fundamentals in Ecology Practicals

Aim of the course

At the end of this lecture you should know:

1. Why we should do statistical analyses
2. What different kind of analyses there are
3. How to chose which analysis to do
4. How to do the analyses well

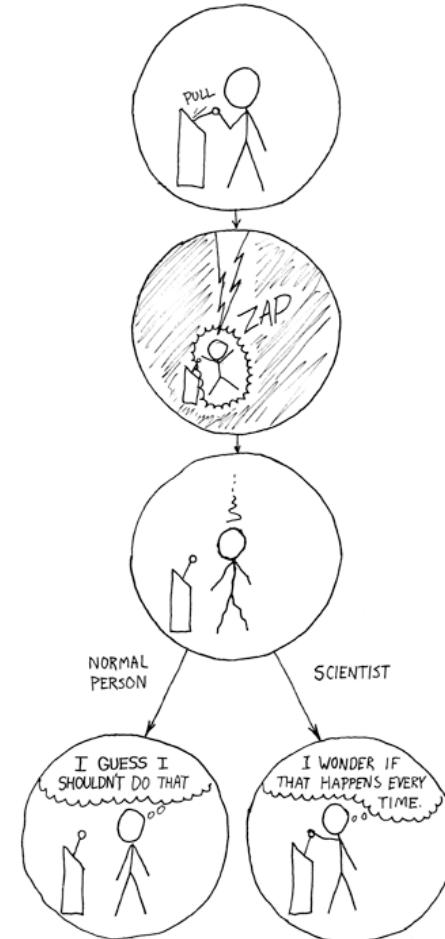
Why should we do statistical analyses?

Goal: understand an underlying **general pattern or relationship** we observed in nature

For instance:

"Plant leaves acclimated to shade have a higher leaf area and lower leaf thickness"

→ Is this generally true (across all leaves on the planet)?



Why should we do statistical analyses?

Goal: understand an underlying **general pattern or relationship** we observed in nature

For instance:

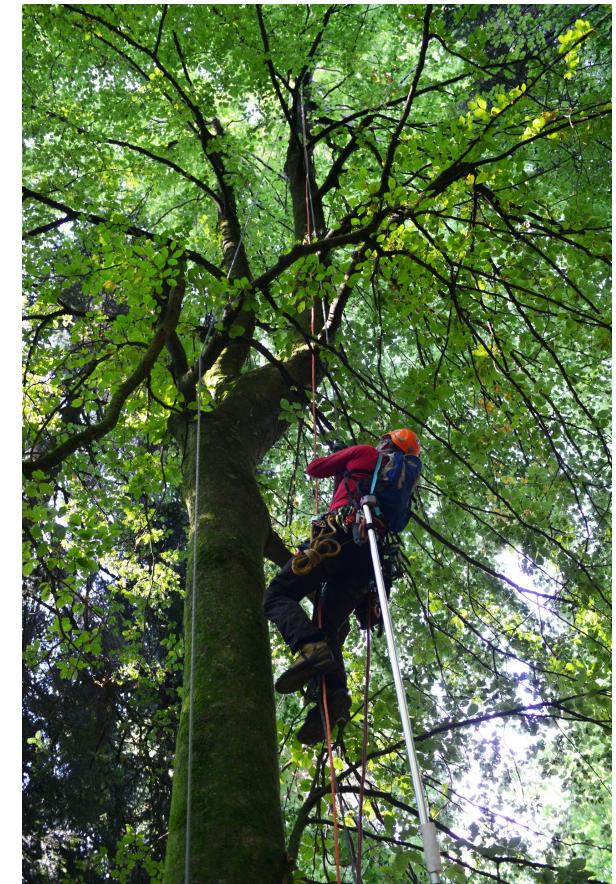
"Plant leaves acclimated to shade have a higher leaf area and lower leaf thickness"

→ Sample the environment

shade leaf

vs.

sun leaf



Why should we do statistical analyses?

Goal: understand an underlying **general pattern or relationship** we observed in nature

For instance:

"Plant leaves are larger in sun than in shade"

Problems:

1. We have variability in nature
2. We cannot measure all plants (too many!)

→ Sample the environment

shade leaf

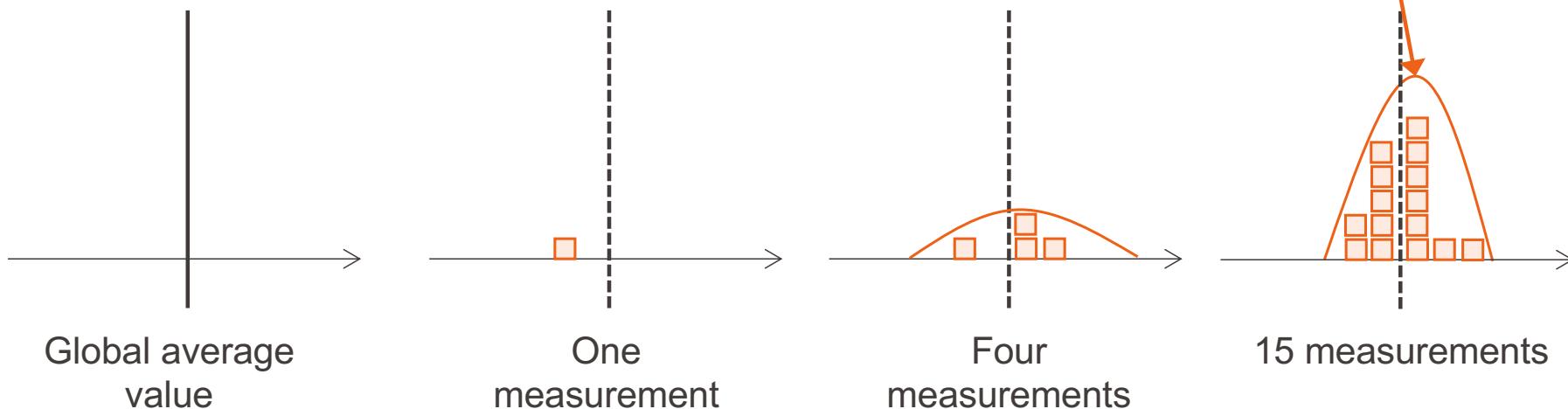
vs.

sun leaf

Why should we do statistical analyses?

- Is our sample representative of the general pattern?
- Every measurement is different due to variability
- We cannot say for sure what the general patterns are
→ We can only calculate probabilities

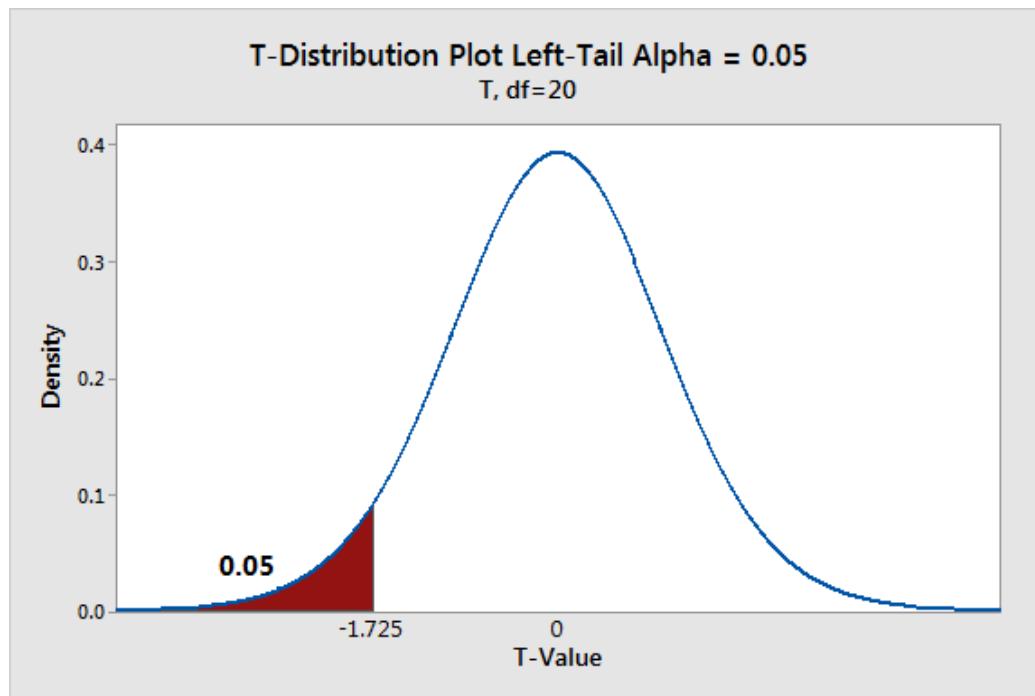
mean of the sampled population (here: higher than global mean)



The more measurements we do, the higher the probability that we get the global pattern

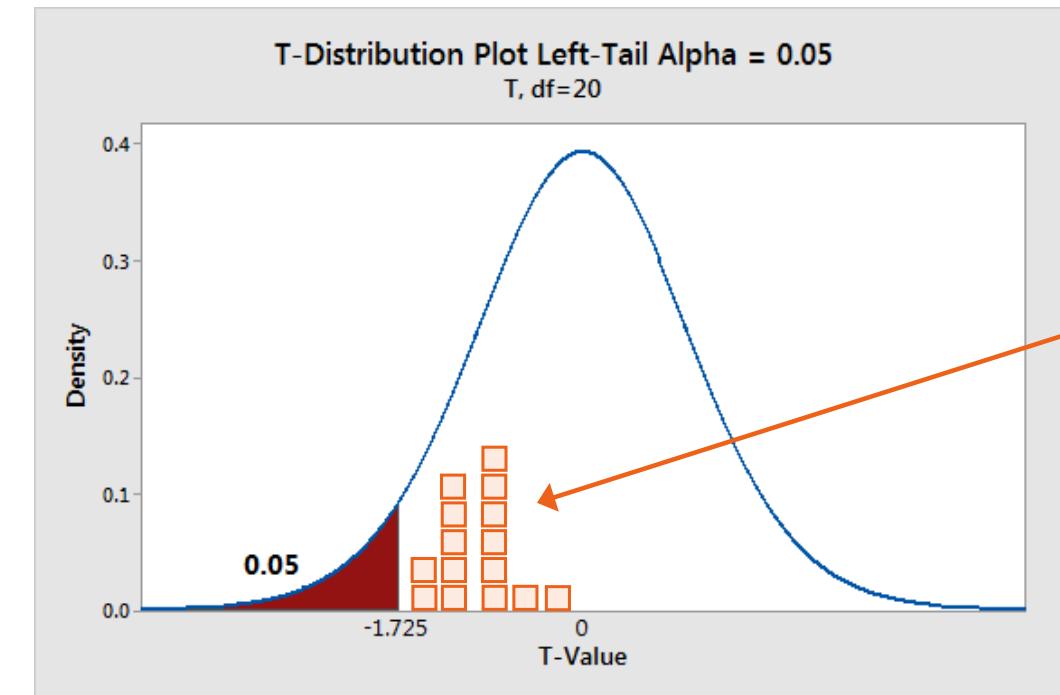
Why should we do statistical analyses?

Frequentist stats: assume an underlying distribution of your data (e.g. t-distribution) to calculate where your measurements are within the distribution area.



Why should we do statistical analyses?

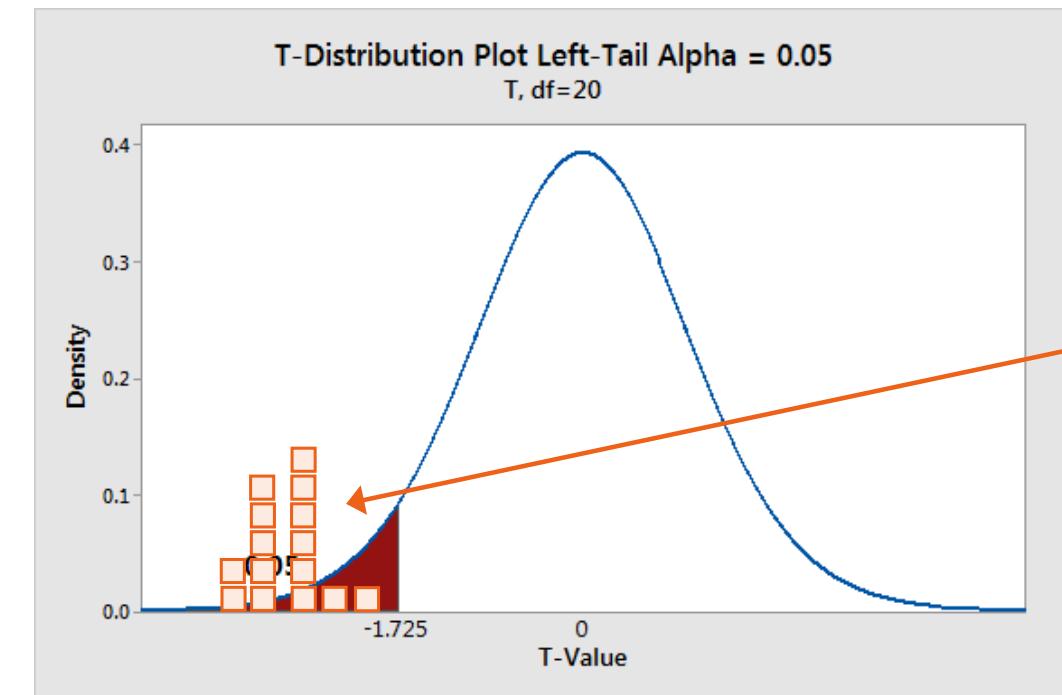
Frequentist stats: assume an underlying distribution of your data (e.g. t-distribution) to calculate where your measurements are within the distribution area.



Your data falls **within** 95% of the area of the t-distribution. The hypothesis that your measurements are different from 0 cannot be rejected

Why should we do statistical analyses?

Frequentist stats: assume an underlying distribution of your data (e.g. t-distribution) to calculate where your measurements are within the distribution area.

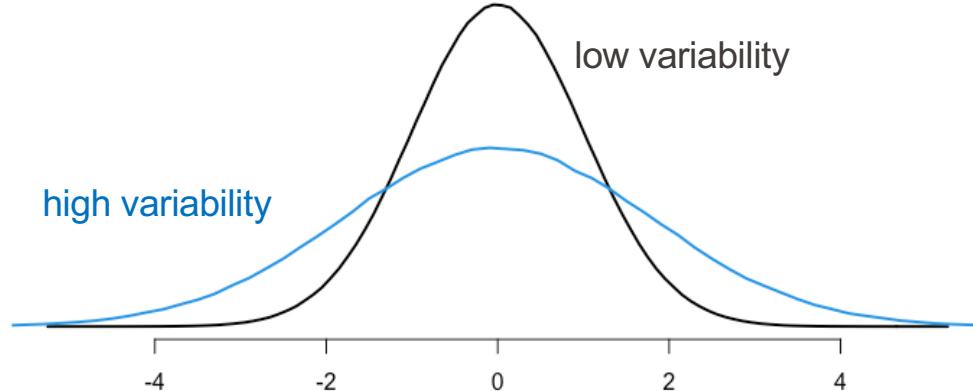


Your data falls **outside** 95% of the area of the t-distribution. The hypothesis that your measurements are different from 0 can be rejected (if you consider 5% sufficient)

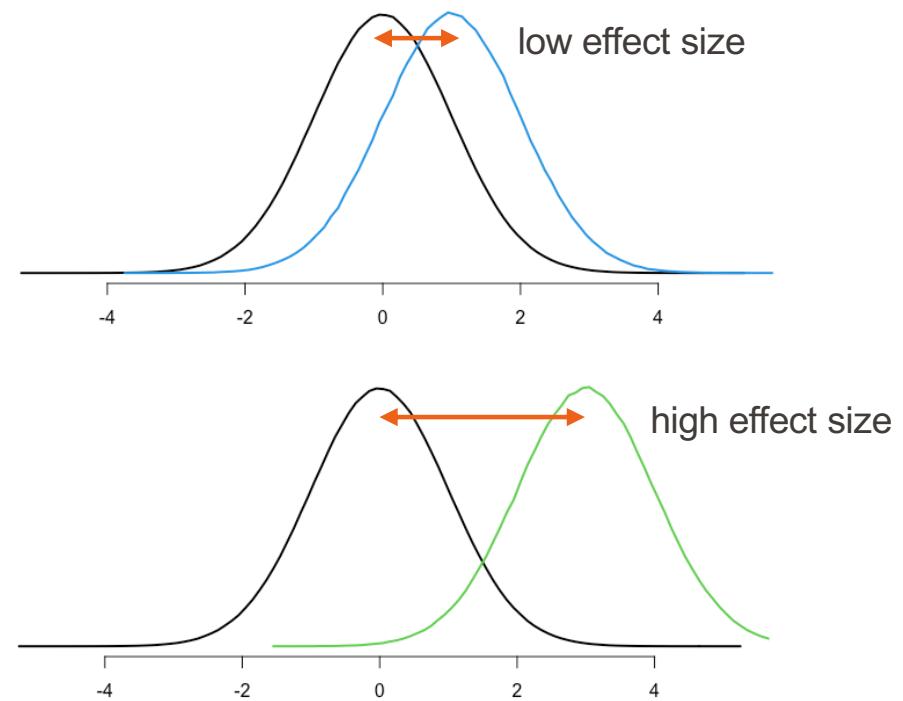
Why should we do statistical analyses?

We need to measure repeatedly to have a good outcome

- How often do we need to measure to have a high certainty?
- Depends on the **variability** of the data and the **effect size** of the pattern or relationship



```
> power.t.test(...)
```



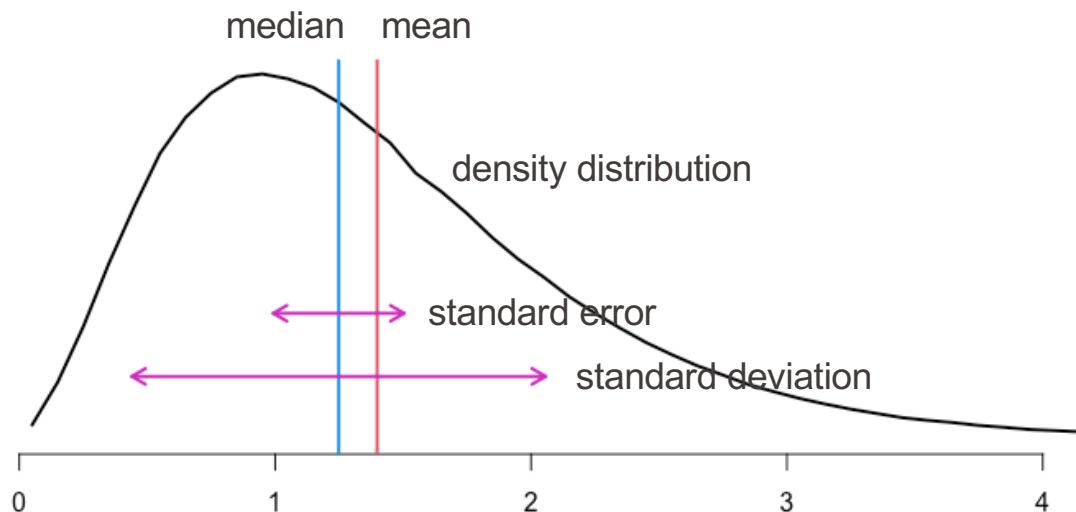
What kind of statistical analyses are there?

- Descriptive statistics
- Correlation of measurements
- Comparison of measurements between groups
- Regression models

Descriptive statistics

- Mean, median, quantiles
- Standard deviation, standard error
- Distribution

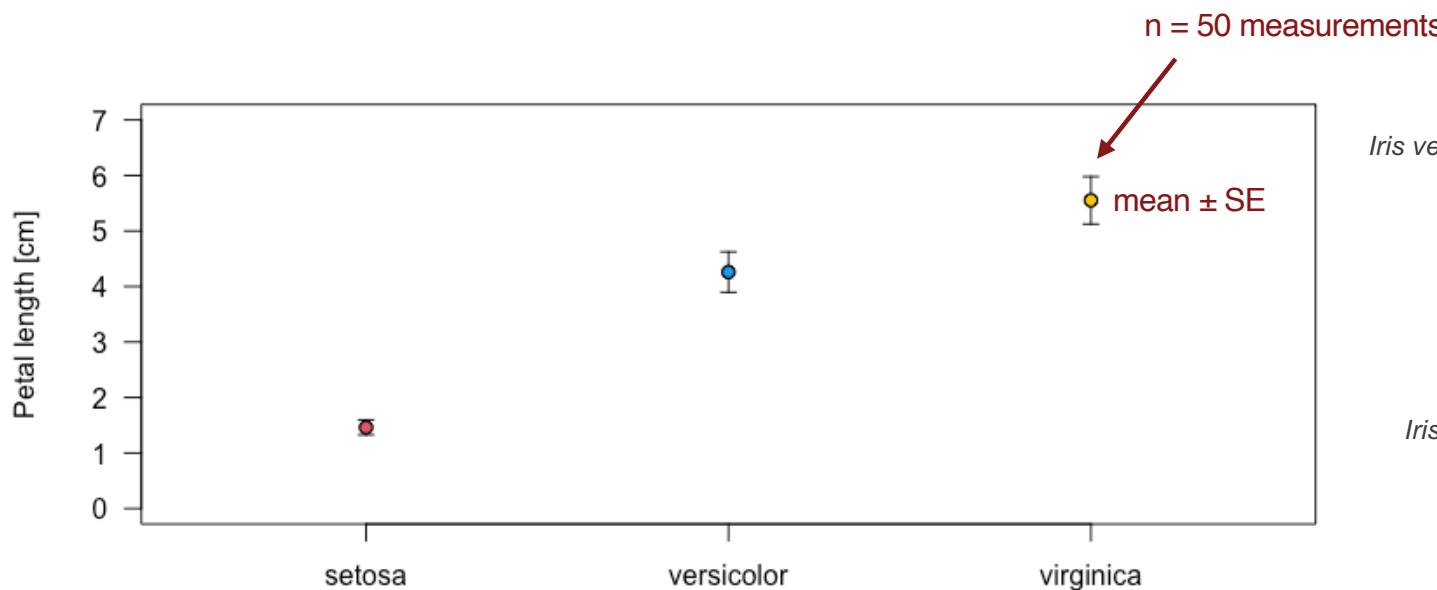
- **Standard deviation (SD):** "how far does each value within your dataset lie from the mean"
- **Standard error (SE):** "how accurately does your sample data represent the whole population"
 $SE = SD / \sqrt{n}$
- The standard error can be used to compare two different samples



```
> mean(my_data$my_measurements)
> median(my_data$my_measurements)
> sd(my_data$my_measurements)
> sd(my_data$my_measurements) /
  sqrt(length(my_data$my_measurements))
> hist(my_data$my_measurements)
```

Descriptive statistics

Show us your analyses in summarised form:
means and standard errors (SE)



Iris versicolor

Iris setosa

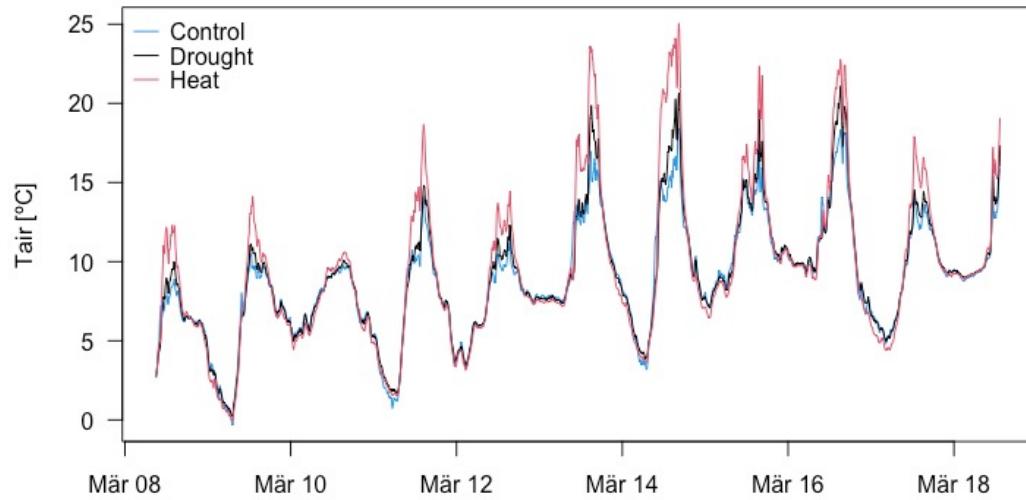
Iris virginica

→ SE provides a "gut feeling" of differences, but is not a statistical test

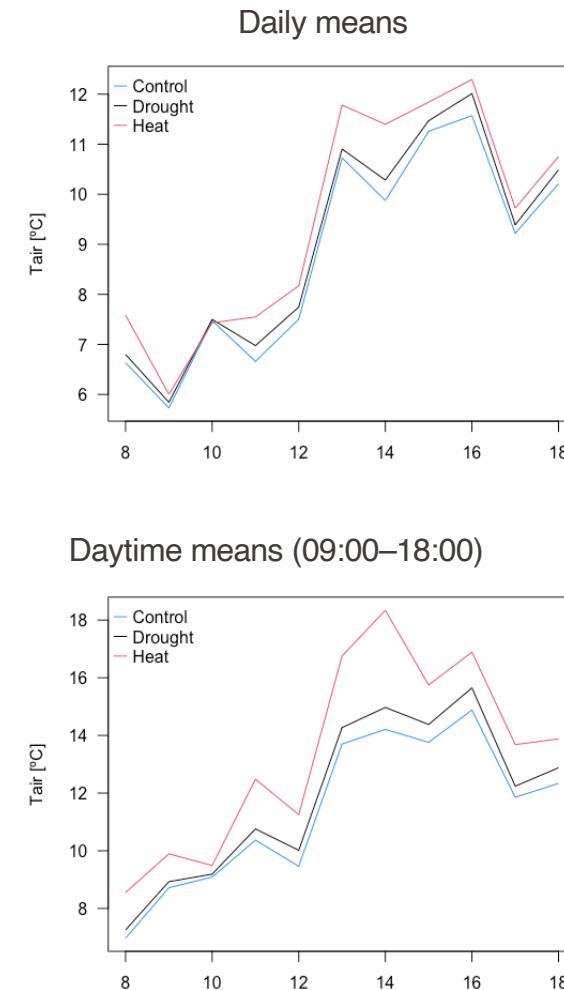
Descriptive statistics

How to deal with meteodata?

→ 10 minute interval measurement too detailed for the report!



→ Don't do more than descriptive stats on meteodata!



Basic code

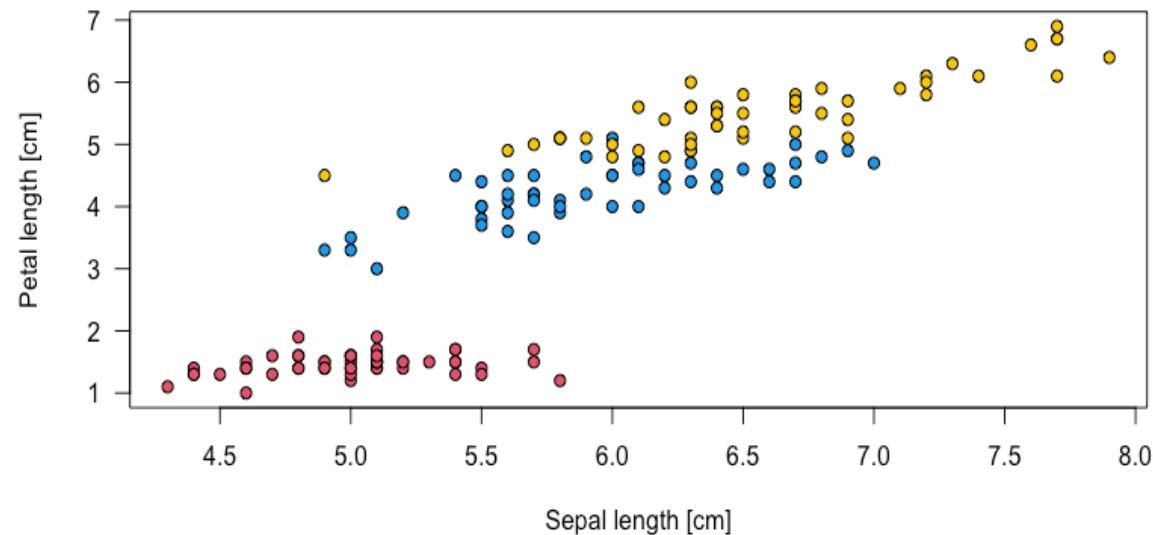
```
> data_agg_day <- aggregate(Tair ~ day + treatment,  
  FUN=mean, data=my_data)  
  
> data_agg_total <- aggregate(Tair ~ treatment,  
  FUN=mean, data=my_data)
```

Advanced way

```
> install.package("dplyr")  
  
> library(dplyr)  
  
> data_agg_day <- my_data %>%  
  group_by(treatment, day) %>%  
  summarise(n=n(),  
            Tair_m = mean(Tair, na.rm=T))  
  
> data_agg_total <- my_data %>%  
  group_by(treatment) %>%  
  summarise(n=n(),  
            Tair_m = mean(Tair, na.rm=T))
```

Correlation of measurements

Show relationships between measurements



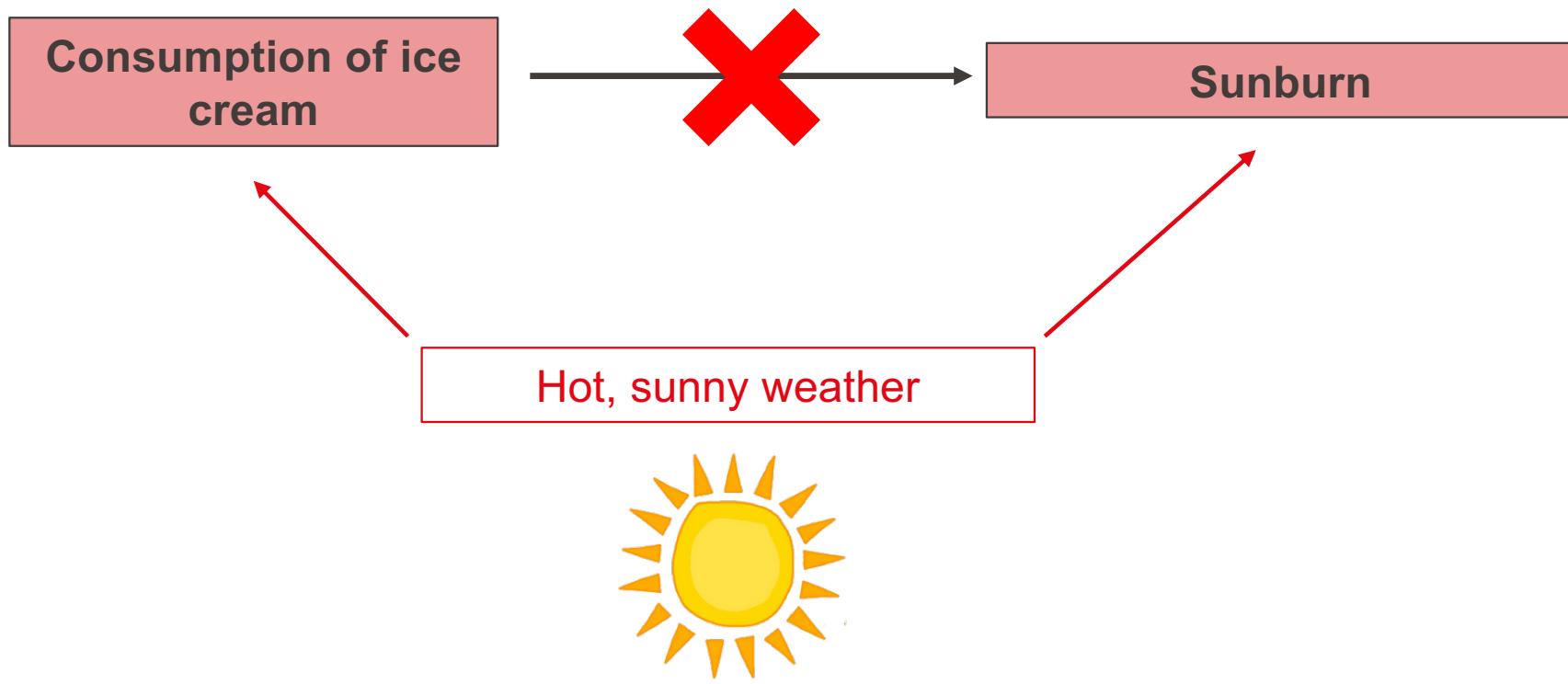
```
> cor(my_data$my_measurements1,  
  my_data$my_measurements2)  
  
[1] 0.8717538  
  
> cor.test(my_data$my_measurements1,  
  my_data$my_measurements2,  
  method = "pearson")  
  
t = 21.646, df = 148, p-value < 2.2e-16
```

→ no causality inferred! Both measurements might be related to something else (fertilisation, species, etc.)

Correlation of measurements

Confounding effect

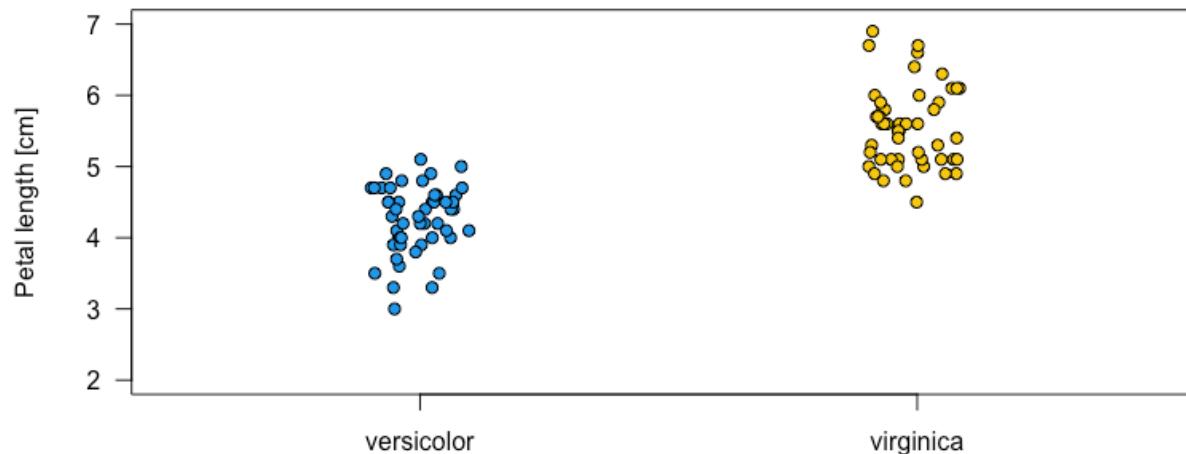
No **direct** causal link between predictor and response!



Group comparisons

Is the difference in petal length between the two species a true difference, or did we just measure it by chance?

→ **what is the probability that we measured the difference by chance?**

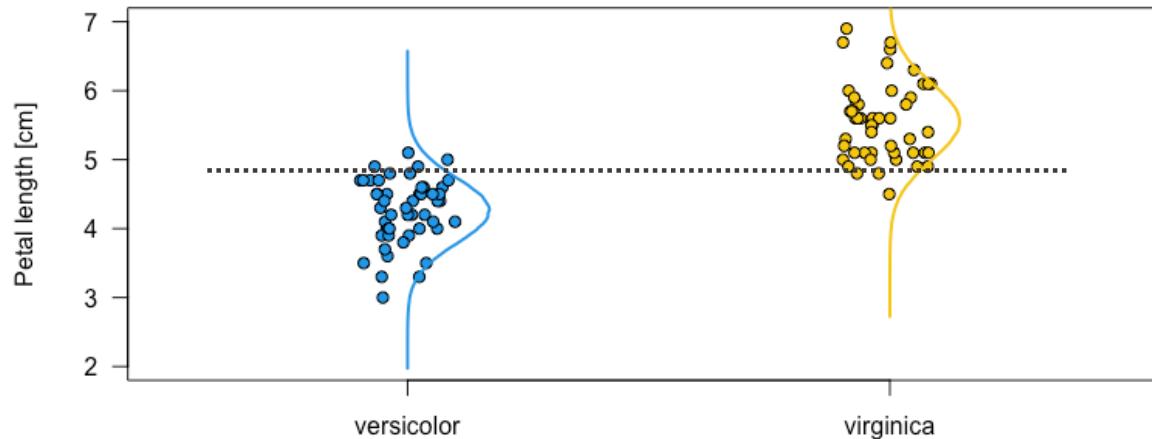


Who thinks the two species differ significantly?

Group comparisons

Assumption: the measurements are distributed with a t-distribution (similar to a normal distribution)

t-test: the probability that the difference is measured by chance is less than 0.001
→ the species differ significantly

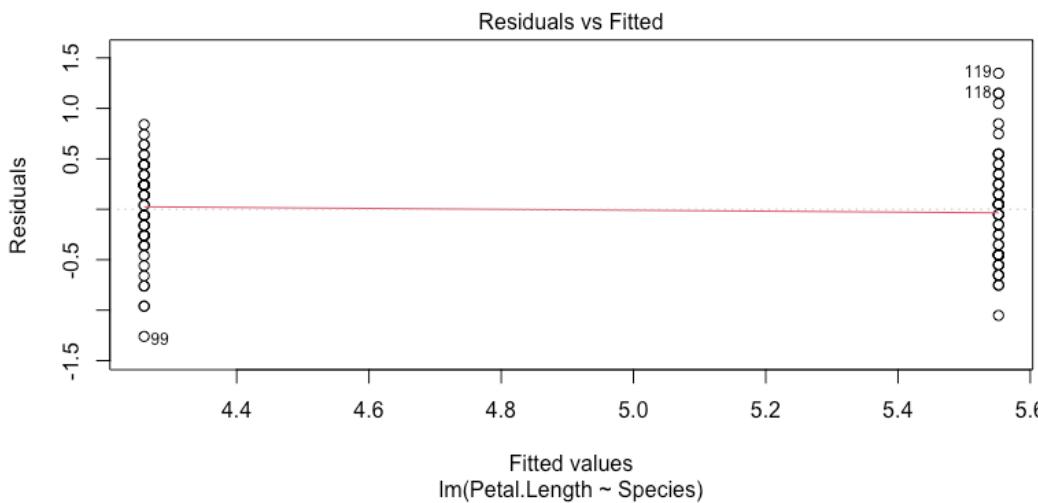
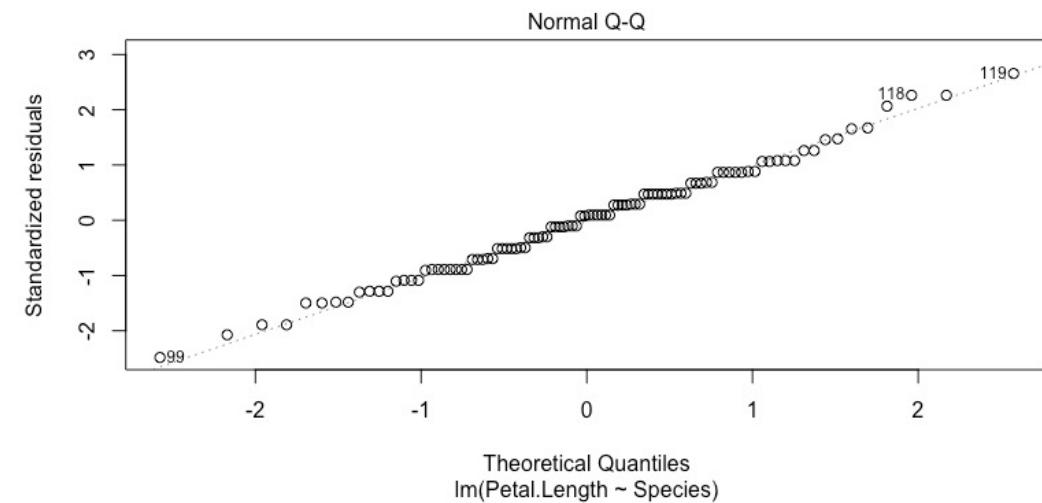


```
> t.test(iris$Petal.Length[iris$Species%in%"versicolor"], iris$Petal.Length[iris$Species%in%"virginica"])  
t = -12.604, df = 95.57, p-value < 2.2e-16  
  
> my_model <- lm(Petal.Length ~ Species, data=iris[iris$Species%in%c("versicolor", "virginica"), ])  
> summary (my_model)  
Species virginica 1.29200 0.10251 12.60 <2e-16 ***
```

Group comparisons

Test the assumption that the data is more or less normally distributed
(Homoscedasticity)

```
> plot(my_model)
> shapiro.test(iris$Petal.Length[iris$Species%in%"versicolor"])
W = 0.966, p-value = 0.1585
```



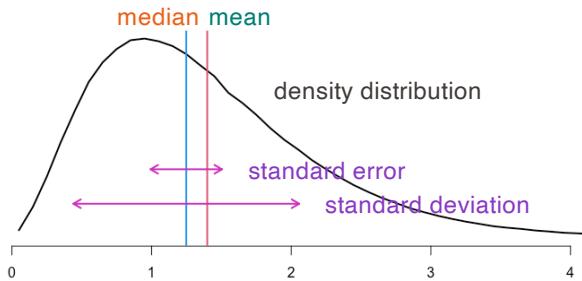
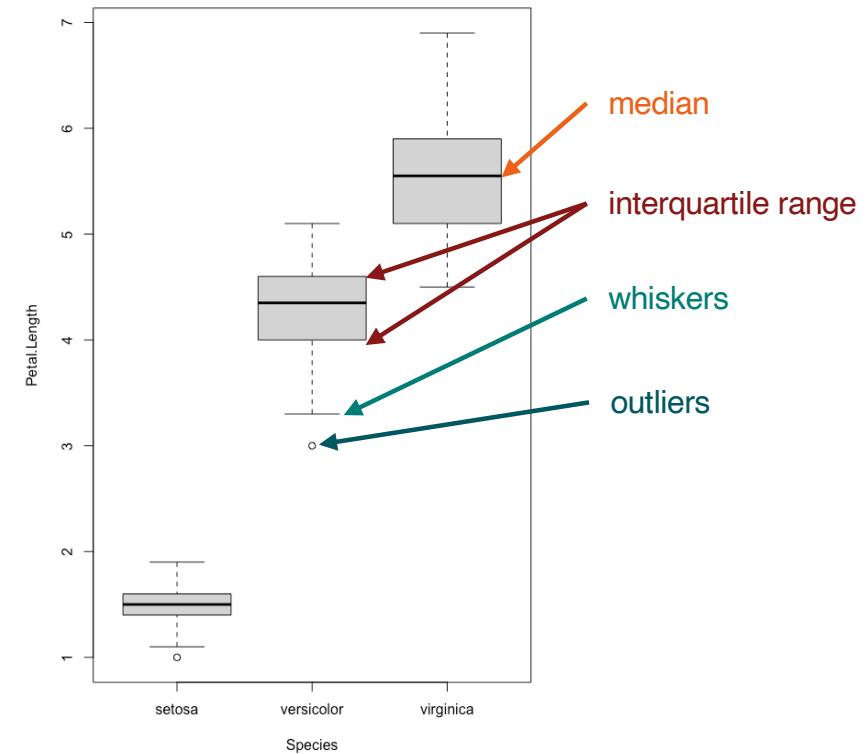
→ Always test these assumptions, but don't show us in the report

Group comparisons

Test the assumption that the data is more or less normally distributed
(Homoscedasticity)

```
> boxplot(Petal.Length ~ Species, data=iris2)
```

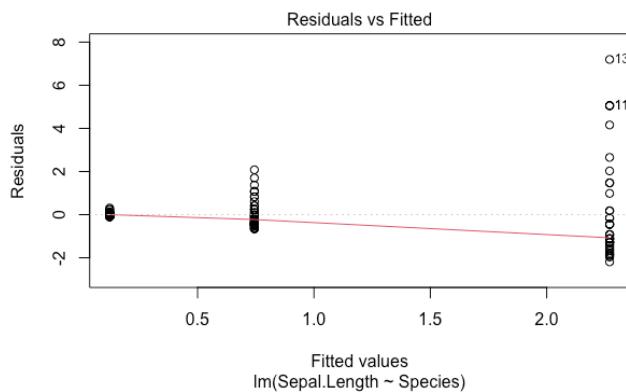
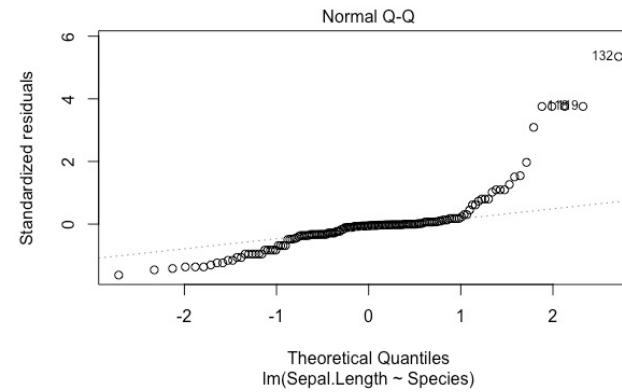
When the **median** is in the middle of the **interquartile range**, the **whiskers** more or less symmetric and not much **outliers**, your data is pretty well normally distributed



Group comparisons

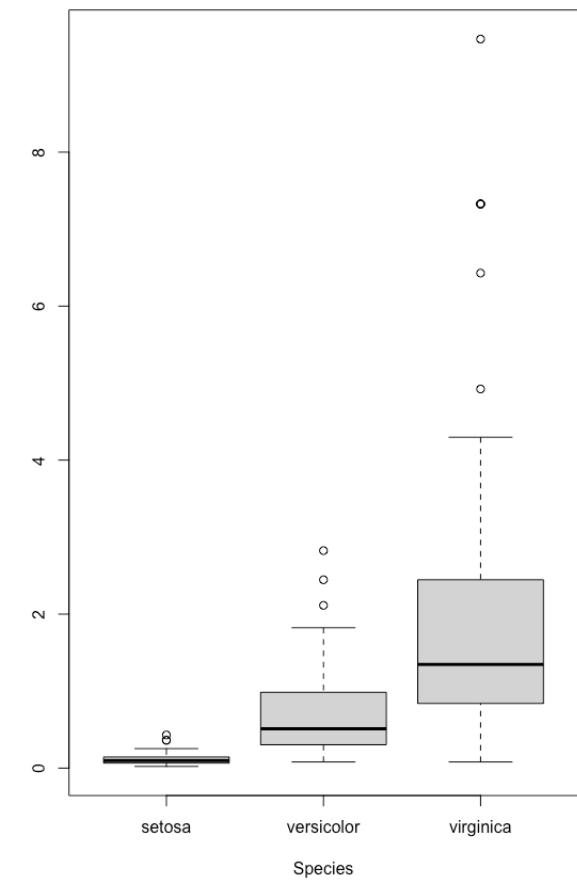
What to do if the data is not normally distributed?

→ transform the data: log-transformation or sqrt-transformation



```
> my_data$log_measurement <- log(my_data$measurement)  
> my_data$sqrt_measurement <- sqrt(my_data$measurement)
```

→ Don't hesitate to transform if you think it improves the analyses



Group comparisons

What do we do if we compare multiple groups (more than two)?

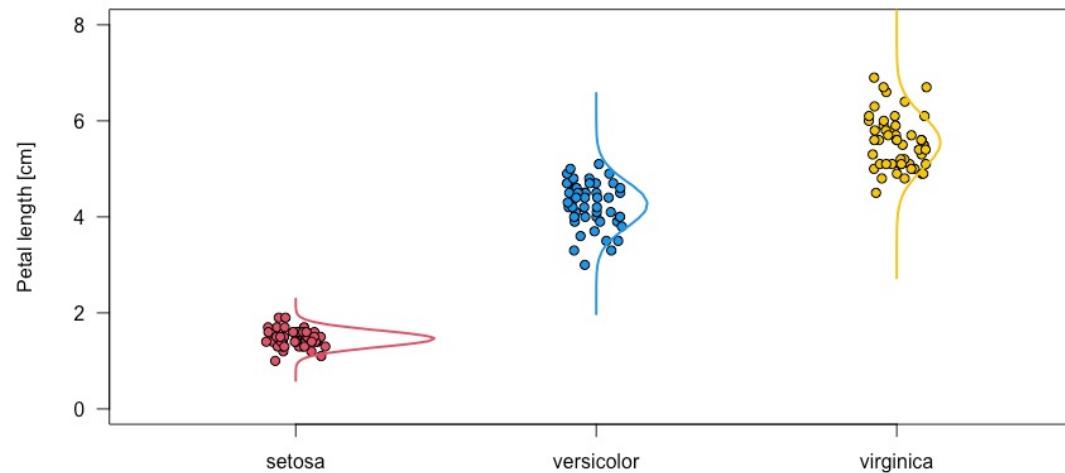
→ **Analysis of variance (ANOVA)**

```
> mymodel <- aov(Petal.Length ~ Species, data=iris)
> summary(model)
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Species	2	437.1	218.55	1180	<2e-16 ***
Residuals	147	27.2	0.19		

The probability that the measured difference between the species is observed by chance is very small.

So, the species probably differ. But all of them? We don't know with this anova.



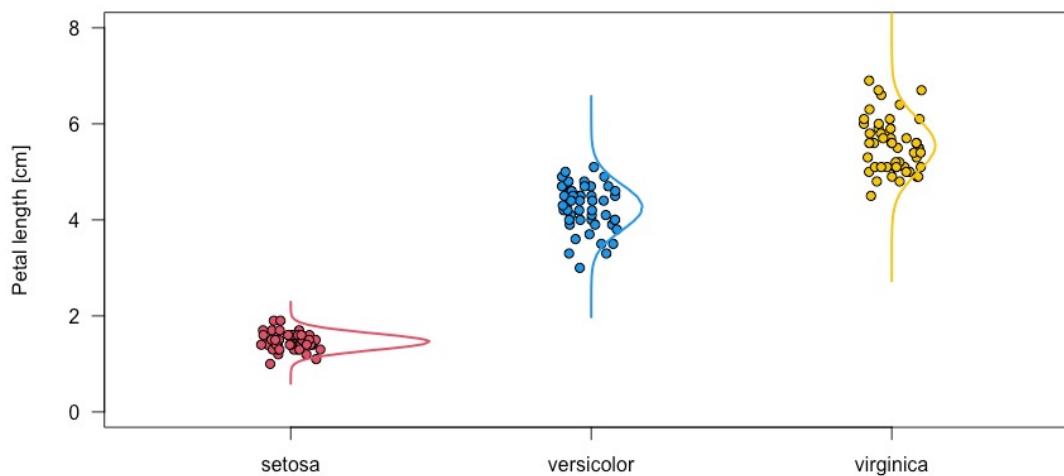
Group comparisons

Pairwise comparison: Tukey test

```
> my_model <- aov(Petal.Length ~ Species, data=iris)
> TukeyHSD(my_model)
```

	diff	lwr	upr	p adj
versicolor-setosa	2.798	2.59422	3.00178	0
virginica-setosa	4.090	3.88622	4.29378	0
virginica-versicolor	1.292	1.08822	1.49578	0

All species probably differ from each other.



Group comparisons

Big question: which groups do I compare?

→ The analysis always has to reflect your experimental design!

Date	Treatment	Pot	Plant	Shoot length	Root length
28.3.2024	Control	1	Y	12.5	7.2
28.3.2024	Control	1	B	13.1	5.7
28.3.2024	Control	1	R	8.5	3.5
28.3.2024	Control	2	Y	7.9	4.7
28.3.2024	Control	2	B	12.5	7.2
28.3.2024	Drought	4	Y	8.5	3.5
28.3.2024	Drought	4	B	7.9	4.7
28.3.2024	Drought	4	R	12.5	7.2
28.3.2024	Drought	5	Y	13.1	5.7
28.3.2024	Drought	5	B	8.5	3.5
11.4.2024	Control	1	Y	12.5	7.2
11.4.2024	Control	1	B	13.1	5.7
11.4.2024	Control	1	R	8.5	3.5
11.4.2024	Control	2	Y	7.9	4.7

DESIGN TYPE	SCHEMA
A-1 Completely Randomized	
A-2 Randomized Block	
A-3 Systematic	
B-1 Simple Segregation	
B-2 Clumped Segregation	
B-3 Isolative Segregation	
B-4 Randomized, but with inter-dependent replicates	
B-5 No replication	

FUNC

■

Group comparisons

Big question: which groups do I compare?

→ The analysis always has to reflect your experimental design!

Date	Treatment	Pot	Plant	Shoot length	Root length
28.3.2024	Control	1	Y	12.5	7.2
28.3.2024	Control	1	B	13.1	5.7
28.3.2024	Control	1	R	8.5	3.5
28.3.2024	Control	2	Y	7.9	4.7
28.3.2024	Control	2	B	12.5	7.2
28.3.2024	Drought	4	Y	8.5	3.5
28.3.2024	Drought	4	B	7.9	4.7
28.3.2024	Drought	4	R	12.5	7.2
28.3.2024	Drought	5	Y	13.1	5.7
28.3.2024	Drought	5	B	8.5	3.5
11.4.2024	Control	1	Y	12.5	7.2
11.4.2024	Control	1	B	13.1	5.7
11.4.2024	Control	1	R	8.5	3.5
11.4.2024	Control	2	Y	7.9	4.7

Pseudoreplication. Just to have more statistical power. Keep them as they are (don't average)

Replication. Also just keep as is.

Treatment. Test this for each date separately. (ANOVA)

Repeated measurements. Test them for each treatment separately to see the development over time.

(ANOVA with Tukey)

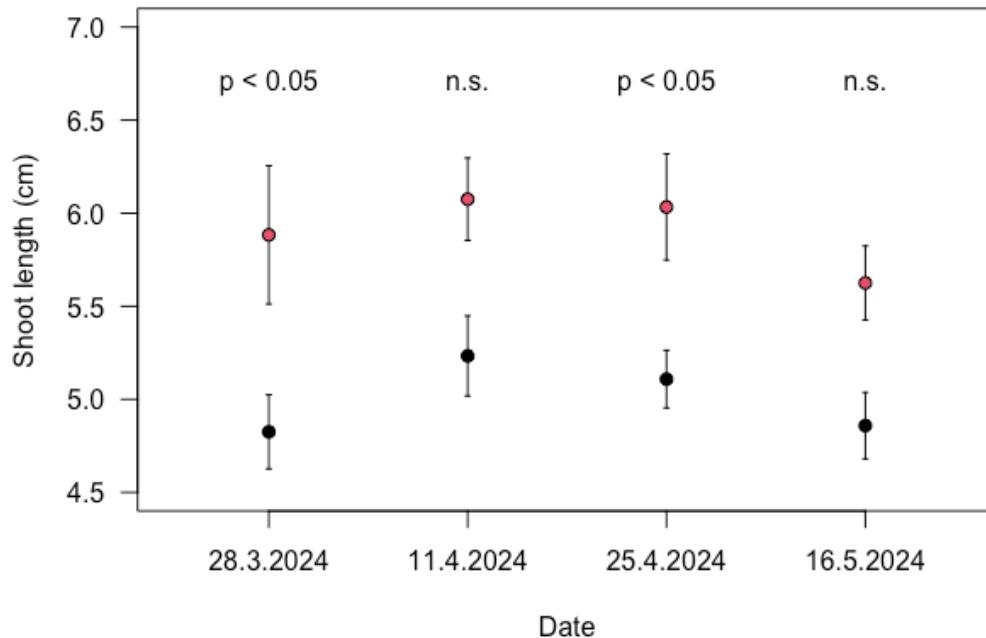
FUND

$$4 \times 2 \times 3 \times 3 = 72 \text{ measurements}$$

Group comparisons

Big question: which groups do I compare?

→ The analysis always has to reflect your experimental design!



```
> my_model_treatment <- aov(Shoot_length ~ Treatment, data=my_ivy[my_ivy$date=="28.3.2024", ])  
  
> my_model_date <- aov(Shoot_length ~ Date, data=my_ivy[my_ivy$Treatment=="Control", ])
```

Group comparisons

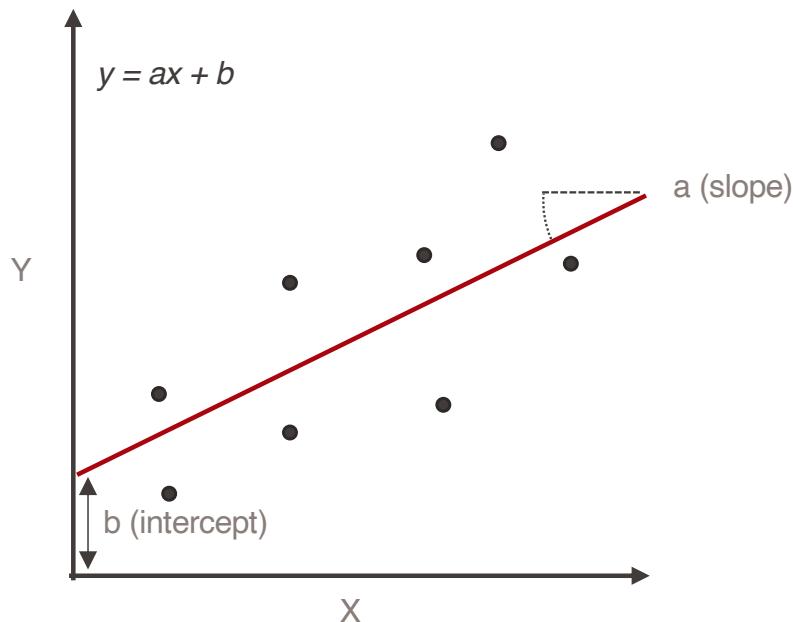
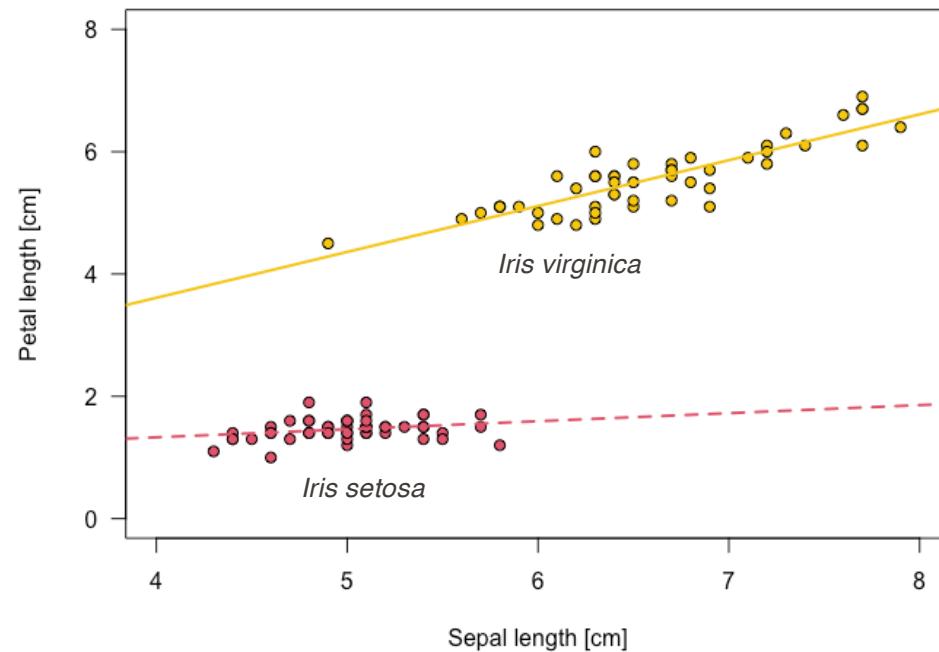
Calculate ratios

- Root : shoot biomass ratio
- Root : shoot length ratio
- Leaf area : leaf mass (specific leaf area, SLA)



Linear regression

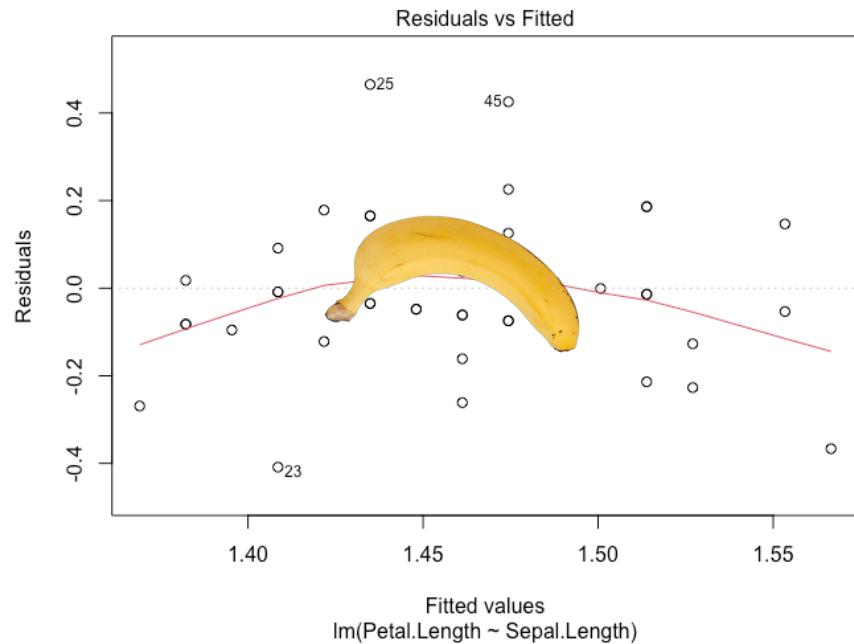
Test the linear effect of X on Y



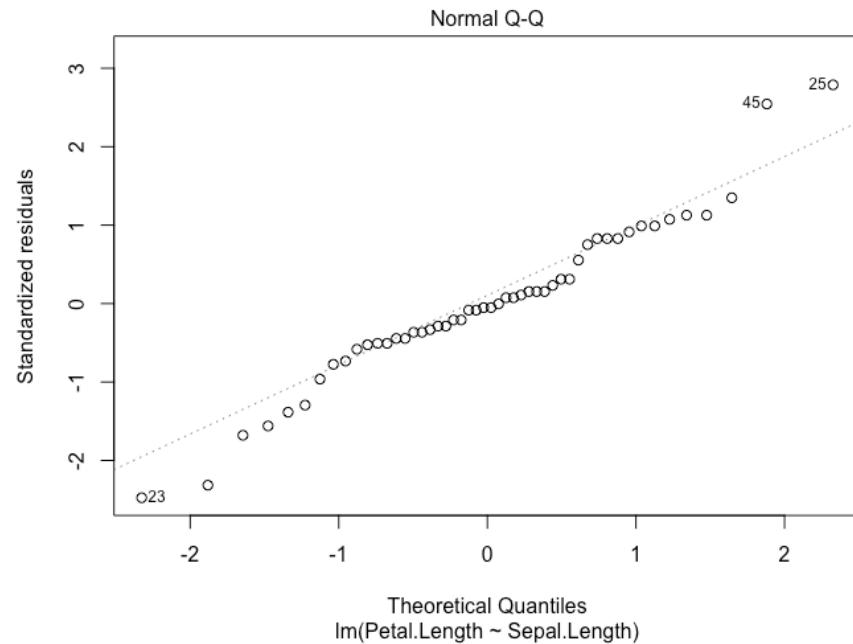
```
> model1 <- lm(Petal.Length ~ Sepal.Length, data=iris[iris$Species=="setosa", ])  
> summary(model1)  
Estimate Std. Error t value Pr(>|t|)  
(Intercept) 0.80305 0.34388 2.335 0.0238 *  
Sepal.Length 0.13163 0.06853 1.921 0.0607 .
```

Linear regression

Again, test the assumptions of normality



→ Not amazing, you want to avoid bananas!



→ Not too bad! Maybe no need for transformation. Up to you to decide...

Non-parametric tests

What should I do if my data is not normally distributed, and transformation does not help?

- Use a Wilcoxon rank sum test!
- Do this for counted data (e.g. leaf number)
- Or whenever you feel like 😊

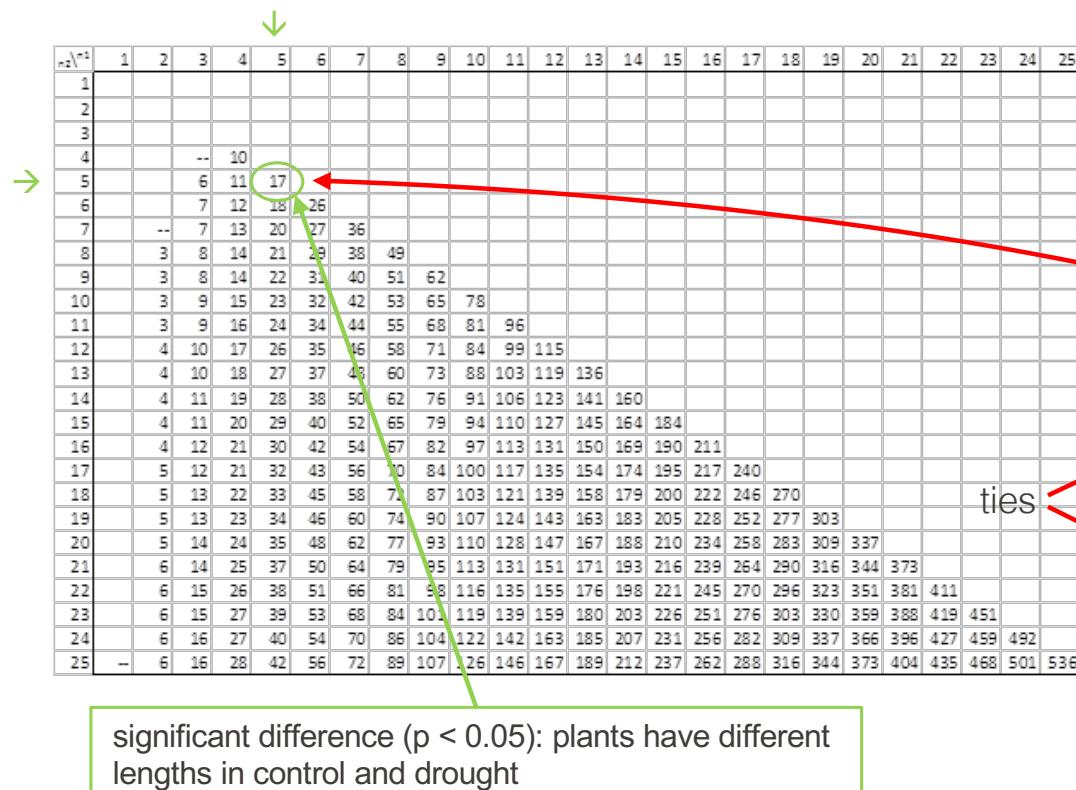
The Wilcoxon rank-sum test is a nonparametric alternative to the two- sample t-test which is based solely on the order in which the observations from the two samples fall.

It is very robust for comparing two independent samples and quite powerful.

plant number	shoot length (cm)	treatment	rank
1	20.5	drought	5
2	15	drought	3
3	12.5	drought	2
4	18.5	drought	4
5	11.5	drought	1
6	37.5	control	9
7	30	control	7.5
8	43.5	control	10
9	30	control	7.5
10	24	control	6

Non-parametric tests

test for alpha = 0.05, two-tailed
("are the treatments different?")



plant number	shoot length (cm)	treatment	rank
1	20.5	drought	5
2	15	drought	3
3	12.5	drought	2
4	18.5	drought	4
5	11.5	drought	1
6	37.5	control	9
7	30	control	7.5
8	43.5	control	10
9	30	control	7.5
10	24	control	6

rank sum of drought: $5 + 3 + 2 + 4 + 1 = 15$

rank sum of control: $9 + 7.5 + 10 + 7.5 + 6 = 40$

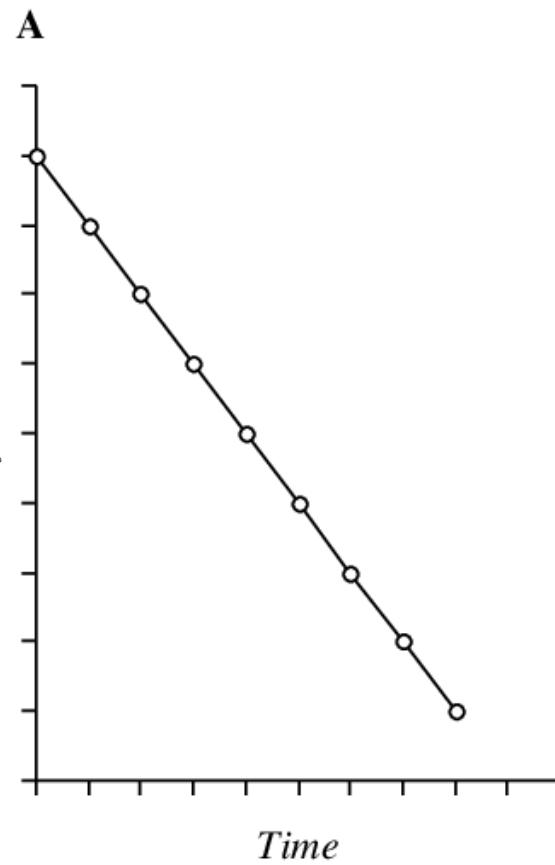
Non-parametric tests

test for alpha = 0.05, two-tailed
("are the treatments different?")

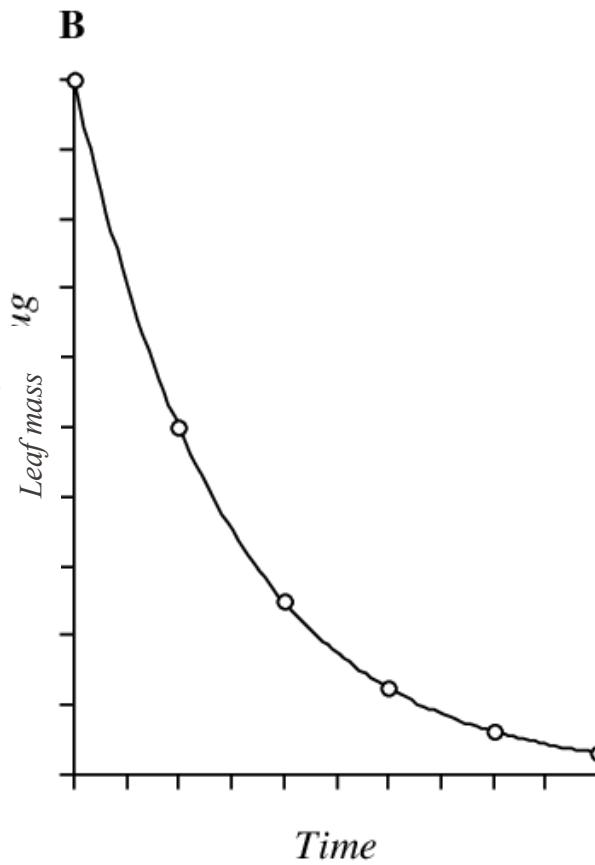
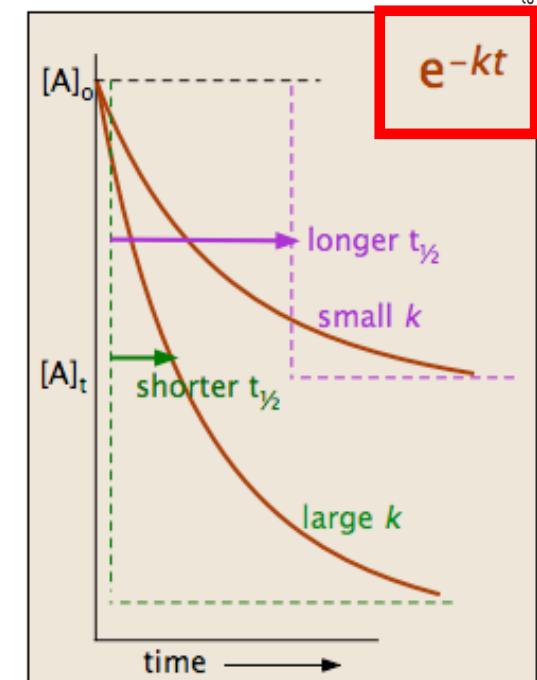
```
> wilcox.test(iris$Petal.Length[iris$Species=="setosa"],  
iris$Petal.Length[iris$Species=="virginica"], alternative="two.sided")  
  
Wilcoxon rank sum test with continuity correction  
  
data: iris$Petal.Length[iris$Species == "setosa"] and  
iris$Petal.Length[iris$Species == "virginica"]  
W = 0, p-value < 2.2e-16  
alternative hypothesis: true location shift is not equal to 0
```

Zero-order kinetics

A constant amount of mass is removed per unit time

**First-order kinetics**

A constant proportion of mass is removed per unit time



Half-life time $t_{1/2}$
(time it takes to reach 50% of initial DM)

How to estimate breakdown rate (k)

- 1) **Zero-order kinetics:** regress DM against days of exposure. The slope of the regression line (negative) equals the decomposition rate k.
- 2) **First-order kinetics:** Regress the natural log (ln) of DM (y-axis) against days of exposure (x-axis). The slope of the regression line (negative) equals the breakdown rate constant k.

→ Compare fits of zero- and first-order kinetics: R^2

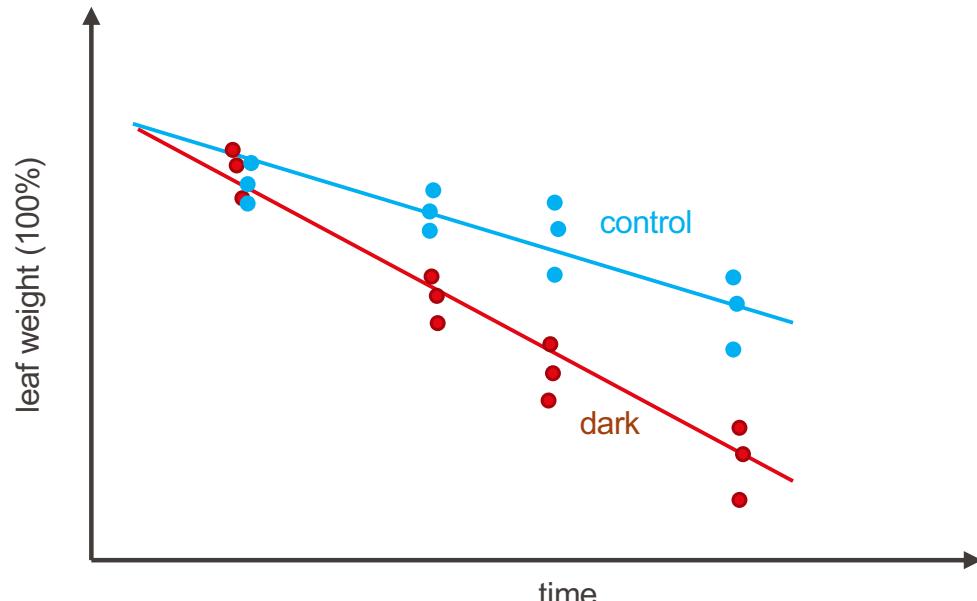
R: `mod1<-lm(weigth~time)`

`summary(mod1)` -> R^2

`mod2<-lm(log(weigth)~time)`

`summary(mod2)` -> R^2

Is there a significant effect of treatment?



R:

```
library(rstatix)  
anova_test(weight~time*treatment)
```

## ANOVA Table (type II tests) ##							
Effect	DFn	DFd	F	p	p < .05	ges	##
1 time	2	39	209.314	1.40e-21 *	0.915 ##	0.936 ##	
2 treatment		1	39	572.828	6.36e-25 *		
3 time:treatment	2	39	0.27		8.81e-03	0.006	